
Supplemental Appendix

1. Vaccine Efficacy

Let S denote the time when vaccination takes place and T denote the time when symp-
tomatic COVID-19 develops; both times are measured in days from the start of the clinical
trial (Figure 1). (We measure each participant’s time to disease from the start of the trial
rather than from their time of enrollment because the risk of disease depends on community
transmission, which varies over the calendar time. Obviously, the two time scales are differ-
ent under staggered enrollment.) In addition, let X denote baseline risk factors (e.g., age,
occupation, comorbidities). We specify that the hazard function of T is related to S and X
through the Cox regression model [1] with a time-varying vaccine effect

λ(t|S,X) = λ0(t)v(t− S)I(t>S)eβ
TX , (1)

where λ0(·) is an arbitrary baseline hazard function, v(·) is a positive function characterizing
the time-varying effect of vaccination, β is a set of regression parameters representing the
effects of baseline risk factors, and I(·) is the indicator function. Under this formulation, the
baseline hazard rate varies over the calendar time; the effect of vaccine on the risk of disease
depends on the time elapsed since vaccination, but not on the specific date of vaccination
or on the baseline risk factors. (The latter restriction can be relaxed by applying the model
separately to each sub-population of interest.)

Vaccine efficacy (VE) at time t after vaccination is generally defined by V E(t) = 1 −
RR(t), where RR(t) is some measure of relative risk at time t comparing the vaccinated
population to the unvaccinated population [2,3]. The most common measures of risk in vac-
cine trials are hazard rate and attack rate [3,4]. In our formulation, the relative hazard rate
or hazard ratio at time t is simply v(t). The relative attack rate at time t after vaccination
when vaccination occurs at time s is the ratio of the cumulative incidence of disease at time
t+ s for individuals vaccinated at time s compared with the unvaccinated:

Pr(T ≤ t+ s|T > s, S = s,X)

Pr(T ≤ t+ s|T > s, S > t+ s,X)
=

1− exp{−eβTX
∫ s+t
s

v(u− s)λ0(u)du}
1− exp{−eβTX

∫ s+t
s

λ0(u)du}
,

which is approximately ∫ t
0
v(u)λ0(s+ u)du∫ t
0
λ0(s+ u)du

(2)

when the incidence is low. (This condition holds for Covid-19 vaccine trials because the
annualized incidence of symptomatic COVID-19 is less than 5%.) If λ0(·) is approximately
constant, then the ratio given in (2) can be written as v(t) = V (t)/t, where

V (t) =

∫ t

0

v(u)du.

Clearly, v(t) is the average hazard ratio over the time period (0, t].
Thus, we have two definitions of time-varying VE: one in terms of hazard rate

V Eh(t) = 1− v(t), (3)
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and one in terms of attack rate
V Ea(t) = 1− v(t). (4)

Note that the assumption of an approximately constant baseline hazard rate over time is
needed in order to interpret v(t) as the ratio of the cumulative incidence but is not used in
estimation. We will refer to V Ea(t) as the VE in attack rate whether the baseline hazard
rate is constant or not. We call V Eh(t) the day-t VE, which pertains to the instantaneous
vaccine effect at time t, and call V Ea(t) the t-day VE, which pertains to the cumulative
vaccine effect over the time interval (0, t]. If the hazard ratio is constant over time, then the
two definitions are equivalent. If the hazard ratio increases over time, then V Ea(t) will be
higher than V Eh(t).

Suppose that the clinical trial enrolls a total of n participants. For i = 1, . . . , n, let Ri,
Ti, Si, Ci, and Xi denote, respectively, the entry time, the time to symptomatic COVID-
19, the time to vaccination, the time to loss to follow-up, and the baseline risk factors
for the ith participant. The data consist of (Ri, Yi,∆i, Di, DiSi, Xi) (i = 1, . . . , n), where
Yi = min(Ti, Ci), ∆i = I(Ti ≤ Ci), and Di = I(Si ≤ Yi).

We assume that (Ri, Si, Ci) are independent of Ti conditional on Xi. The likelihood takes
the form

n∏
i=1

{
λ0(Yi)e

βTXi

}∆i

v(Ỹi)
Di∆i

× exp

(
−eβTXi

[
(1−Di)

∫ Yi

Ri

λ0(t)dt+Di

{∫ Si

Ri

λ0(t)dt+

∫ Yi

Si

λ0(t)dV (t− Si)
}])

=
n∏
i=1

{
λ0(Yi)e

βTXi

}(1−Di)∆i

exp

{
−eβTXi

∫ Y ∗
i

Ri

λ0(t)dt

}

×
[{
λ0(Yi)e

βTXiv(Ỹi)
}∆i

exp

{
−eβTXi

∫ Yi

Si

λ0(t)dV (t− Si)
}]Di

,

where Ỹi = Yi − Si, and Y ∗
i = (1 − Di)Yi + DiSi = min(Yi, Si). We approximate log λ0(t)

through splines withm basis functions, B1(t), . . . , Bm(t), such that log λ0(t) ≈
∑m

k=1 γkBk(t).
Let θ = (βT, γ1, . . . , γm)T, and Zi(t) = [XT

i , B1(t), . . . , Bm(t)]T. We perform the nonpara-
metric maximum likelihood estimation [5], in which V (·) is treated as a step function jumping

at the time points Ỹi with Di = ∆i = 1. Thus, we maximize the objective function

n∏
i=1

e(1−Di)∆iθ
TZi(Yi) exp

{
−
∫ Y ∗

i

Ri

eθ
TZi(t)dt

}[(
eθ

TZi(Yi)V {Ỹi}
)∆i

exp

{
−
∫ Ỹi

0

eθ
TZi(t+Si)dV (t)

}]Di

,

(5)
where V {t} is the jump size of V (·) at t.

We first maximize the objective function in (5) for fixed θ to yield

V (t) =
n∑
i=1

Di∆iI(Ỹi ≤ t)

S(0)(θ; Ỹi)
. (6)

Here and in the sequel, S(k)(θ; y) =
∑n

j=1 DjI(Ỹj ≥ y)eθ
TZj(y+Sj)Zj(y+Sj)

⊗k, where a⊗0 = 1,

a⊗1 = a, and a⊗2 = aaT for a column vector a. After plugging (6) into (5), we obtain the
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profile likelihood for θ. Differentiating the profile log-likelihood with respect to θ yields the
estimating function

n∑
i=1

{
(1−Di)∆iZi(Yi)−

∫ Y ∗
i

Ri

eθ
TZi(t)Zi(t)dt

}
+

n∑
i=1

Di∆i

{
Zi(Yi)−

S(1)(θ; Ỹi)

S(0)(θ; Ỹi)

}
.

Denote the resulting estimator of θ by θ̂. Replacing θ in (6) by θ̂ yields the estimator of V (t)

V̂ (t) =
n∑
i=1

Di∆iI(Ỹi ≤ t)

S(0)(θ̂; Ỹi)
,

which is reminiscent of the Breslow estimator [6] for the cumulative baseline hazard function
under the standard Cox model. We then estimate V Ea(t) through equation (4).

Using counting-process martingale theory and other mathematical arguments [7,8], we

can show that V̂ (·) is consistent and asymptotically normal. In addition, the covariance

between V̂ (t1) and V̂ (t2) can be consistently estimated by n−1
∑n

i=1 Wi(t1)Wi(t2), where

Wi(t) = Di

[
∆iI(Ỹi ≤ t)

S(0)(θ̂; Ỹi)
−

n∑
j=1

Dj∆jI{Ỹj ≤ min(t, Ỹi)}eθ̂
TZi(Ỹj+Si)

S(0)(θ̂; Ỹj)2

]

−
n∑
j=1

Dj∆jI(Ỹj ≤ t)S(1)(θ̂; Ỹj)
T

S(0)(θ̂; Ỹj)2
Qi,

and

Qi =

[
n∑
i=1

∫ Y ∗
i

Ri

eθ̂
TZi(t)Zi(t)

⊗2dt+
n∑
i=1

Di∆i

{
S(2)(θ̂; Ỹi)

S(0)(θ̂; Ỹi)
− S(1)(θ̂; Ỹi)

⊗2

S(0)(θ̂; Ỹi)2

}]−1

×

[
(1−Di)∆iZi(Yi)−

∫ Y ∗
i

Ri

eθ̂
TZi(t)Zi(t)dt+Di∆i

{
Zi(Yi)−

S(1)(θ̂; Ỹi)

S(0)(θ̂; Ỹi)

}

−Di

n∑
j=1

Dj∆jI(Ỹi ≥ Ỹj)e
θ̂TZi(Ỹj+Si)

S(0)(θ̂; Ỹj)

{
Zi(Ỹj + Si)−

S(1)(θ̂; Ỹj)

S(0)(θ̂; Ỹj)

}]
.

These results can be used to construct confidence intervals for V Ea(t). Specifically, we first
construct the confidence intervals for log{V (t)} and then transform them to V Ea(t). We
can also construct simultaneous confidence bands for V Ea(·) [8].

We estimate v(·) by applying a local linear smoother to the jump sizes of V̂ (·). The jump

size of V̂ (·) at Ỹi is given by v̂i = Di∆i/S
(0)(θ̂; Ỹi). For any t, we fit a local linear regression

model and estimate its intercept A(t) and slope B(t) by solving the equation

n∑
i=1

Kbn(Ỹi − t)
[

1

Ỹi − t

]{
v̂i − A(t)−B(t)(Ỹi − t)

}
= 0,

where Kbn(x) = b−1
n K(x/bn), K(x) = (2π)−1/2e−x

2/2, and bn is a data-adaptive bandwidth.

We let bn = cRD/n
1/5
D , where c is a tuning parameter, RD is the range of the observed event
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times, and nD is the number of disease cases [9]. Denote the resulting estimator of A(t) by

Â(t). We then estimate v(t) by

v̂(t) = Â(t)
n∑
i=1

Kbn(Ỹi − t)

and estimate VEh(t) according to equation (3). We let the tuning parameter c lie between
0.1 and 1.0. A smaller value of c makes v̂(t) less biased but more variable, whereas a larger
value of c generates a more smooth estimate of the VEh curve.

Finally, we define the VE in attack rate over the time interval (t1, t2] by

V Ea(t1, t2) = 1− V (t2)− V (t1)

t2 − t1
.

The fraction on the right-hand side is the average hazard ratio over the time period (t1, t2].

We estimate V (t2) − V (t1) by V̂ (t2) − V̂ (t1), which is normally distributed with variance

Var{V̂ (t1)}+ Var{V̂ (t2)}− 2 Cov{V̂ (t1), V̂ (t2)}. We then construct the confidence intervals
for V Ea(t1, t2) based on the log-transformation.

Remark. Durham et al. [2] considered a special case of model (1) in which all participants
are vaccinated at approximately the same time (such that S can be set 0 for all participants)
and estimated the time-varying hazard ratio by smoothing the residuals from the standard
Cox model with a constant hazard ratio. If community transmission is constant over time,
then one can estimate the incidence rate in the vaccine group by using the number of cases
among the participants who have been vaccinated for the same amount of time and assess
waning VE by comparing the estimates of relative incidence rates for successive time periods.
In COVID-19 vaccine trials, the enrollment period is relatively long compared with the study
duration, and community transmission varies considerably over time. Thus, it is necessary
to adopt two different time scales: time since study initiation for the disease endpoint and
time since vaccination for the vaccine effect.

2. Simulation Studies

We assumed that 40,000 participants entered the study at a constant rate over four months,
i.e., R ∼ Uniform(0, 4). We created a composite baseline risk score X, which takes values 1,
2, 3, 4, and 5 with equal probability. At study entry, half of the participants were assigned
to vaccine and half to placebo. The statistically optimal design would be to maintain the
original vaccine and placebo groups until the end of the study; we refer to this design as Plan
A. We also considered three blinded crossover designs, under which placebo participants
receive vaccine and vaccine participants receive placebo at the time of crossover, and all
participants are followed until the end of the study or the time of analysis, which was set to
be 10.5 months. The three blinded crossover designs are as follows:

Plan B. Crossover occurs at month (11 − X + G), where G follows the exponential
distribution with mean of 0.5 month.

Plan C. 20% of participants follow Plan A and 80% follow Plan B.
Plan D. Crossover occurs at month 6 + G, where G follows the exponential distribution

with mean of 0.5 month.
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Plan C mimics a scenario where all participants are offered the option of crossover, but a
small percentage (20%) choose to stay on the original assignments.

In addition, we considered four unblinded crossover designs:
Plan B’. Crossover occurs at month (11.5−X).
Plan C’. 20% of participants follow Plan A and 80% follow Plan B’.
Plan D’. Crossover occurs at month 6.5.
Plan D”. Crossover occurs at the same time as Plan D.

Under unblinded crossover, participants are notified of their original assignments at the time
of crossover, and placebo participants receive the vaccine soon after. In practice, only placebo
participants would cross over, since there is no need to give placebo to vaccine recipients
after unblinding. In Plans B’–D”, the time of crossover is the time of unblinding rather than
the time when placebo participants actually receive the vaccine. Because participants might
change their behavior upon discovering their original treatment assignments, we discarded
the follow-up data collected after unblinding by censoring each participant’s time to disease
at their time of unblinding. This strategy avoids bias due to behavioral confounding at the
cost of reduced statistical efficiency.

We generated the event time T from model (1) with β = 0.2,

log λ0(t) = −5.93 + 0.1t− 0.3(t− 7)+,

and
log v(t) = a+ bt, t > 0,

where t+ = t if t > 0 and 0 otherwise, and a and b were chosen to achieve the desired
5-month and 10-month VEa. We censored T at the time of unblinding under Plans B’–D”.

For each simulated dataset, we estimated log λ0(t) using a piece-wise constant function
with 20 pieces placed at the equal quantiles of the observed event times. We then estimated
V (t) using the proposed method and estimated V Ea(t) according to equation (4). In addi-
tion, we estimated v(t) through local linear regression with tuning parameter c = 0.1 and
estimated V Eh(t) according to equation (3). For comparison, we also fit the standard Cox
proportional hazards model that includes X and time-dependent covariate I(S < t) with
a constant hazard ratio and estimated VE by 1 minus the estimated hazard ratio of the
time-dependent covariate. The results are reported in the main text.

3. Sensitivity Analysis

We suggest reporting the E-value [10] as a summary measure of the evidence against the
null hypothesis H0 : V E(t) ≤ 0. The E-value is the minimum strength of association on the
risk ratio scale, i.e, RR(t) = 1−V E(t), that an unmeasured confounder would need to have
with both vaccination status and disease outcome in order to fully explain away a specific
observed VE. Let R̂R(t) be the estimate of RR(t), and let UL(t) be the upper limit of the

95% confidence interval for RR(t). Then the E-value for R̂R(t) is given by

e(t) =
1 +

√
1− R̂R(t)

R̂R(t)
,
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provided that R̂R(t) < 1. In addition, the E-value for UL(t) is computed as 1 if UL(t) ≥ 1
and as

eUL(t) =
1 +

√
1− UL(t)

UL(t)

otherwise. E-values near one suggest weak support for a causal inference, and greater E-
values provide increasing evidence for causality.

Suppose, for example, that R̂R(t) = 0.50, with 95% confidence interval (0.08, 0.75).

Then e(t) = 3.4, meaning that the result of R̂R(t) being less than one could be explained
away by an unmeasured confounder associated with both vaccination status and disease by
a risk ratio of 3.4-fold each after accounting for the vector X of measured confounders, but
not by a weaker unmeasured confounder. In addition, eUL(t) = 2, which is the strength
of unmeasured confounding at which statistical significance for V E(t) > 0 would be lost.
These two E-values judge how confident we can be that V E(t) truly exceeds 0, accounting
for potential unmeasured confounding due to unblinding and for sampling variability.

We can provide a conservative estimate of V E(t) that accounts for potential unmeasured
confounding [11]. Let RRUD(t) be the maximum risk ratio for disease when comparing
any two categories of the unmeasured confounder U , within either the vaccinated group
or the unvaccinated group, conditional on the vector X of observed covariates, and let
RREU(t) be the maximum risk ratio for any specific level of the unmeasured confounder U
when comparing the vaccinated and unvaccinated individuals. Of note, RRUD(t) quantifies
the importance of the unmeasured confounder U for disease, and RREU(t) quantifies how
imbalanced the vaccinated and unvaccinated groups are in the unmeasured confounder U .
We define the bias or bounding factor

B(t) =
RRUD(t)RREU(t)

RRUD(t) +RREU(t)− 1
.

Then a conservative (lower bound) estimate of the VE is given by 1 − R̂R(t)B(t), and a
conservative confidence interval is obtained by multiplying the lower and upper limits of the
confidence interval for RR(t) by B(t).
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